翻訳と辞書
Words near each other
・ Momentum curtain
・ Momentum Deferred
・ Momentum diffusion
・ Momentum exchange tether
・ Momentum investing
・ Momentum Mississippi
・ Momentum One Day Cup
・ Momentum operator
・ Momentum Pictures
・ Momentum Space (album)
・ Momentum theory
・ Momentum trader
・ Momentum transfer
・ Momentum Transport
・ Momentum-depth relationship in a rectangular channel
Momentum-transfer cross section
・ Momerstroff
・ Mometa
・ Mometa anthophthora
・ Mometa chlidanopa
・ Mometa infricta
・ Mometa zemiodes
・ Mometasone furoate
・ Mometasone/formoterol
・ Momeyer, North Carolina
・ Momhil Sar
・ Momi
・ Momi (ship)
・ Momi cafe
・ Momi Zafran


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Momentum-transfer cross section : ウィキペディア英語版
Momentum-transfer cross section
In physics, and especially scattering theory, the momentum-transfer cross section (sometimes known as the momentum-''transport'' cross section) is an effective scattering cross section useful for describing the average momentum transferred from a particle when it collides with a target. Essentially, it contains all the information about a scattering process necessary for calculating average momentum transfers but ignores other details about the scattering angle.
The momentum-transfer cross section \sigma_ \sigma} (\theta) by
:\sigma_ \sigma} (\theta) \mathrm \Omega
:::= \int \int (1 - \cos \theta) \frac (\theta) \sin \theta \mathrm \theta \mathrm \phi.
The momentum-transfer cross section can be written in terms of the phase shifts from a partial wave analysis as
:\sigma_ \sum_^\infty (l+1) \sin^2(- \delta_l(k) ).
== Explanation ==

The factor of 1 - \cos \theta arises as follows. Let the incoming particle be traveling along the z-axis with vector momentum
:\vec_\mathrm = q \hat.
Suppose the particle scatters off the target with polar angle \theta and azimuthal angle \phi plane. Its new momentum is
:\vec_\mathrm = q \cos \theta \hat + q \sin \theta \cos \phi\hat + q \sin \theta \cos \phi\hat.
By conservation of momentum, the target has acquired momentum
:\Delta \vec = \vec_\mathrm - \vec_\mathrm = q (1 - \cos \theta) \hat - q \sin \theta \cos \phi\hat - q \sin \theta \cos \phi\hat .
Now, if many particles scatter off the target, and the target is assumed to have azimuthal symmetry, then the radial (x and y) components of the transferred momentum will average to zero. The average momentum transfer will be just q (1 - \cos \theta) \hat. If we do the full averaging over all possible scattering events, we get
:\Delta \vec_\mathrm = \langle \Delta \vec \rangle_\Omega.
:::: = \sigma_\mathrm^ \int \Delta \vec \frac (\theta) \mathrm \Omega .
:::: = \sigma_\mathrm^ \int \left(q (1 - \cos \theta) \hat - q \sin \theta \cos \phi\hat - q \sin \theta \cos \phi\hat \right ) \frac (\theta) \mathrm \Omega
:::: = q \hat \sigma_\mathrm^ \int (1 - \cos \theta) \frac (\theta) \mathrm \Omega
:::: = q \hat \sigma_\mathrm / \sigma_\mathrm
where the total cross section is
: \sigma_\mathrm = \int \frac (\theta) \mathrm \Omega .
Therefore, for a given total cross section, one does not need to compute new integrals for every possible momentum in order to determine the average momentum transferred to a target. One just needs to compute \sigma_\mathrm.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Momentum-transfer cross section」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.